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Detection and Discrimination 
 
Introduction 
 

The remaining sessions in the course find us, at long last, addressing the central issues:  
 
 How do we distinguish between radar returns generated in the presence and absence of a 

target?  
 
and  
 
 Given a detection procedure, how do we characterise its effectiveness quantitatively? 
 
In posing these questions more precisely we will draw heavily on the probabilistic concepts 
introduced in the last session; the mathematical toolkit established in the earlier sessions then 
helps us work out their answers. Today we will concentrate on issues of principle, while paying 
the price of our adopting simple, and occasionally unrealistic, models of the radar returns. 
Subsequent sessions will remedy this defect, when we discuss the K distribution model and its 
applications in some detail.  
 
Some of the material we will cover today will probably be familiar to you already; other bits come 
fairly close to topics of active research. If we can identify the common principles underlying both 
the everyday and the erudite and use each to illuminate the other, then we will be getting 
somewhere. We also discuss Kalman filtering, whose fundamental principles are very similar to 
those of detection and estimation and provide a useful introduction to adaptive filtering. Some 
exercises are provided, that fill in details glossed over in the session and suggest useful 
extensions to the material we cover today. 
 
 
Statistical models for probabilities of detection and false alarm 

 
A radar system presents us with a signal x, displayed perhaps as a function of time or spatial co-

ordinates. If this signal changes noticeably as a result of the presence of a target it should be 
possible to detect that target. Usually there is a significant increase in the signal in the presence 
of the target; this implies that we might well perform detections by setting a threshold and 
ascribing any signal in excess of our threshold to a detection. This procedure need not be fool-
proof; mis-attributions of large values of x derived from the radar returns from the background 

(i.e. clutter) will give rise to false alarms. Obviously, if we set the threshold sufficiently high we will 
tend to avoid such false alarms, but only at the cost of missing some ‘real’ detections. Detection 
performance calculations attempt to quantify this trade off between detections and false alarms. 
 
To make significant progress we must first characterise the signal x in the presence and absence 

of the target. A probabilistic description in terms of the pdf (probability density function) P x( ) of its 

value x is convenient and, given the complexity and uncertain nature of the processes that 
contribute to the radar return, is as much as we can justifiably hope for. The probability that x 

takes values x between x x1 2 and  is given by 

 

    dx P x

x

x

1

2

∫ ( )       (1) 

 
To be consistent with the usual properties of a probability this pdf must be positive and satisfy the 
normalisation condition 
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    dxP x

−∞

∞

∫ =( ) 1.      (2) 

We let PA  denote the pdf of the signal derived from the return from the ambient background; 

PT will denote the pdf of the signal in the presence of the target. If we now take a threshold X  we 

can express the probabilities of detection and false alarm as follows 
 
 

   P dxP x P dxP xD

X

T F

X

A= =
∞ ∞

∫ ∫( ); ( )     (3) 

 
 A plot of probability of detection vs. probability of false alarm, mapped out as the threshold X 
varies, is known as a Receiver Operation Characteristic (ROC) curve; ideally we would like a high 
probability of detection to be achieved at the expense of a small probability of false alarm.  A 
couple of typical ROC curves are shown: 
 

   
The ROC curve corresponding to an inability to distinguish between target and background is just 
a straight line of unit slope. (In many cases it is more convenient to plot ROC curves against log 
axes; this distorts their shape somewhat but the basic idea remains the same.) 
 
Thus we see that the problem of detection can be regarded as that of deciding whether the pdf of 

x is better described by PA or PT , given a value of x. We have already argued that a simple 

thresholding on x will allow us to make this distinction with some measure of success; the 
question remains as to whether we can do better than this. We will now see that there are 
circumstances in which we can. 
 
 
Likelihood ratios and optimal detection. 

 
Let us consider the case where we wish to differentiate, on the basis of measurements of a  

random variable z, between the two possible pdfs of its values z P z P z
A Bz z, ,( ) ( ) and . Given a 

measurement z  we assign this value, on the basis of some test, as yet unspecified, to the set of 

values ZA  corresponding to the former distribution or ZB , corresponding to the latter.  Between 

them ZA  and ZB  contain all possible values of z. On the basis of this classification we define a 

probability of detection (correct assignment to distribution A) and a probability of false alarm 
(incorrect assignment to distribution A) 

as 

   P dzP z P dzP zA

Z

B

ZA A

d f and   = =∫ ∫z z, ,( ) ( )     (4)  

 

Not so good Better 

PF 

PD 
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We now define the optimum decision rule as that which maximises the probability of detection 

whilst maintaining the false alarm rate at a constant value α. This specification of optimality is 
known as the Neyman-Pearson criterion. To determine the test that satisfies this criterion we now 
consider the quantity 

    F P Pf= + −d λ α( )       (5)  

 

As the value of the false alarm rate is maintained at α we see that the maximisation of F 
corresponds to an equivalent maximisation of the probability of detection. We now introduce our 
explicit expressions for the probabilities of detection and false alarm to give  

   F dz P z P zA

Z

B

A

= + −∫λα λ( ( ) ( )), ,z z      (6) 

Thus we see that F will be maximised if the integral in this expression is carried out over the 
region where the integrand takes all its positive values. This allows us to identify the optimal 

decision rule as that in which an observation of z is identified as coming from P z
Az, ( )  if, and only 

if,   

    Λ( )
( )

( )

,

,

z
P z

P z

A

B

= >z

z

λ .      (7) 

  
 

i.e. that the decision rule is based on the likelihood ratio Λ( )z . In practise it is frequently more 

convenient to carry out this thresholding on a monotonic function of the likelihood ratio such as its 

logarithm. The Lagrange multiplier λ  can now be identified as the threshold on the likelihood ratio 

that establishes the given false alarm rate α .  Thus, if P B( ) ,Λ Λ is the pdf of the likelihood ratio 

derived from a measurement of z drawn from distribution B, λ is defined implicitly by 

   α
λ

=
∞

∫ d P BΛ Λ Λ( ) ,       (8) 

 
Here we have introduced the likelihood ratio test on the basis of the Neyman-Pearson criterion; 
exactly the same test emerges from a consideration of the so-called Bayes risk analysis. In this 
an intuitively reasonable cost function is constructed in terms of probabilities of detection and 
false alarm and the optimum test procedure is identified as that which minimises this quantity. 
Detailed discussions of this approach, which is algebraically more complex but is more readily 
extendible to the analysis of the testing of multiple, rather than binary, hypotheses, are given in 
the standard textbooks by van Trees (‘Detection, Estimation and Modulation Theory, Part 1’, John 
Wiley, New York, 1968) and Middleton (‘An Introduction to Statistical Communication Theory’, 
McGraw-Hill, New York, 1960). Here we merely stress that the two approaches lead to the same, 
optimal, test procedure . 

Thus we have identified the optimum statistic with which to distinguish between signals drawn 
from two separate distributions. This procedure requires a detailed knowledge of the pdfs of these 
two distributions, which may not always be available in practice. Other, sub-optimal, test statistics 
are frequently used, chosen on the basis of convenience and general applicability. 
 
 
Gaussian statistical models 

 
The Gaussian distribution is a much used statistical model pdf that has the advantages of relative 
tractability and widespread validity. The former derives in part from the latter; a good model will 
be studied with sufficient vigour to ensure that it becomes tractable (e.g. through the study of the 
error function, which characterises the probabilities of detection and false alarm derived from the 
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Gaussian pdf). The wide applicability of the Gaussian model is a consequence of the central limit 
theorem, which shows that, subject to various conditions, the sum of a ‘large‘ number of random 
variables has a Gaussian distribution. Thus the Maxwell distribution of velocities and the Green’s 
function of the diffusion equation both have a characteristic Gaussian form; you might like to 
check these out for yourself. We will now use various Gaussian distributions to illustrate our 
discussion. 
 
The simplest example is that of a single, 1-dimensional  Gaussian random variable x, whose 

values x have a pdf 
 

  ( )P x x m( ) exp ( ) ( )= − −
1

2
2

2

2 2

πσ
σ .     (9) 

 

We recall that this is characterised by two parameters, the mean m and the standard deviation σ,  
that the characteristic function of this distribution is 
 

  ( )C k ikx ikm k( ) exp( ) exp( )exp= = − 2 2 2σ     (10) 

   
that its moments have the factorisation property 
 

  ( )
( )!

!
( )x m

n

n
x mn

n

n
− = −2 22

2
      (11) 

 
and that the probability of x exceeding a threshold X is given in terms of the error function: 
 

 ( ) ( )( )1

2
2

1

2
1 2

2

2 2

πσ
σ σdx x m X m

X

exp ( ) ( ) erf ( )− − = − −
∞

∫    (12) 

 
where 
 

   erf( ) exp( )z dt t

z

= −∫
2 2

0
π

.     (13) 

 
The n-dimensional generalisation of the Gaussian distribution, that includes the effects of 
correlation between its components, is fairly straightforward. In particular the characteristic 
function and moment results go through as you would expect; the analogue of the error function 
isn’t so obvious, though we will consider things like this in the analysis of multi-channel 
observations later in the session. One particularly useful multivariate Gaussian process is the 
circular ‘complex’ Gaussian with two independent components of zero mean and equal variance. 
The I and Q components of a speckle/thermal noise signal provide an example of this Thus we 
have  
 

   P E E
E E

I Q
I Q( , ) exp= −
+











1

2 22

2 2

2πσ σ
    (14) 

 
This can be expressed in terms of amplitude and phase variables 
 

  E E E
E

E
I Q

Q

I

= + =








−2 2 1θ tan      (15) 
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so that 
 

  ( )P E
E

E( , ) exp ( )θ
πσ

σ= −
2

2
2

2 2 .     (16) 

 
The marginal pdfs of the phase and amplitude are 
 

  ( )P E
E

E P( ) exp ( ) ; ( )= − =
σ

σ θ
π2

2 22
1

2
.    (17) 

 

The intensity i E= 2  has a particularly simple pdf: 
 

   ( )P I
I

I I( ) exp= −
1

.      (18) 

 
 
A simple performance calculation - a Swerling 2 target in thermal noise 

 
Now let’s do our first performance calculation. We model the target and background returns by 
complex Gaussians with different mean intensities: 
 

  ( ) ( )P I
I

I I P I
I

I Ia
a

a t
t

t( ) exp ( ) exp= − = −
1 1

    (19) 

(It seems sensible to assume that I It a> ; we are in fact modelling the clutter and target 

returns as complex Gaussian processes of different powers, which we add together to give a 
resultant complex Gaussian process. Here we are working with intensities and have ‘thrown 
away’ any phase-borne information in the signals.) 
 
The log likelihood ratio takes the simple form 
 

  Λ =








 + −









log

I

I
I

I I

a

t a t

1 1
      (20) 

 
In this case we see that thresholding on the intensity is the optimal detection procedure, as well 
as a convenient one. The expressions for the probabilities of detection and false alarm for a given 

threshold IT  are: 

 

  ( ) ( )P I I P I ID T t F T a= − = −exp exp      (21) 

 
and are particularly simple in this case. If we have N independent measurements of the intensity 
the appropriate pdfs are 
 

 P I
I

I I P I
I

I Ia

a

N k

k

N

a t

t

N k

k

N

t( ) exp ( ) exp= −










 = −













= =
∑ ∑1 1

1 1

   (22) 

 
In this case we see that thresholding on the sum of the available intensities gives us the optimum 
detection procedure. To generate ROC curves we must now calculate the pdfs of such sums of 
intensities drawn from the target and background distributions. To do this efficiently we proceed 
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via the characteristic functions of the distributions of the single intensity measurements (we use 
the Laplace form as I is necessarily positive) 
 

  C s Is
s I

( ) exp( )= − =
+

1

1
      (23) 

 
Thus the corresponding characteristic function of the pdf of the sum of N independent intensities 
is given by (why?) 
 

  

( )
C s Is

s I
N

N

N
( ) exp( )= − =

+

1

1
     (24) 

  
this leads to following pdf for the sum of intensities 
 

  
( )

( )

P I
i

ds
sI

s I

I

N I
I I

i

i

N

N

N

( )
exp( )

( )!
exp

=
+

=
−

−

− ∞

+ ∞

−

∫
1

2 1

1

1

π
γ

γ

      (25) 

 
You can use this result to calculate ROC curves in example 1. 
 
The foregoing example is not entirely trivial; it provides a model for the detection of a rapidly 
fluctuating target in thermal noise and as such is quite useful or the assessment of performance 
of the small target detection. 
 
Swerling 0 and the Rice distribution. 

 
We can also carry out performance calculations in which the target signal does not fluctuate 
(Swerling 0 model). Thus we can represent the vector of I and Q components of the received 
signal as E A n= + where n is the thermal noise process. As the noise process is isotropic we can 
chose the signal vector A to define the Q direction in the co-ordinate system in which we perform 

our integrations. Thus we have: 
 

 ( )

C s sE

I
dE dE s E E

E

I

E A

I

s I

A s

s I

I Q I Q
I Q

( ) exp(

exp ( ) exp exp
( )

( )
exp

( )

= −

= − + −








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−









=
+

−
+











−∞

∞

−∞

∞

∫ ∫

2

2 2
2 2

2

1

1

1 1

π
  (26) 

 
(Prove it if you want.)  
 
To find the pdf of the intensity of the process we Laplace invert this expression 

  P I
i

ds
sI

s I

sA

s I
i

i

( )
exp( )

( )
exp

)
=

+
−
+











− ∞

+ ∞

∫
1

2 1 1

2

π
γ

γ

     (27) 

 
 
a little bit of algebraic manipulation allows us to recast this as: 
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 P I
I

I A

I i
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p
p

A I

I pi

i
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
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


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
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    (28) 

 
 

We now expand ( )exp ( )A I I p2 2
in a series and invert the Laplace transform term by term, noting 

that 
 
 

   ∫
∞+

∞−

+
=

i

i

n n
p

p
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i

γ

γ
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1
)exp(

2

1
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     (29) 

 
 
This leads us to 
 

  

P I
I
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I
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I
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I
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I
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     (30) 

 
The modified Bessel function I has been identified from its series representation. To get the 
characteristic function of the pdf of N incoherently summed intensities we merely raise our earlier 
result to the appropriate power; the pdf is again obtained by Laplace inversion: 
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    (31) 

 
This result shows how a steady signal is ‘brought out’ of clutter by incoherent averaging. Filling in 
the details is part of exercise 1.  
 
To carry out the optimum detection of a steady signal in thermal noise we would have to use the 
likelihood ratio derived from the exponential and Rice distributions: 
 

  
( )( ) ( )

( ) ( ) ( )Λ =
− +

−
= −

exp

exp
exp

I A I I A I I

I I
A I I A I I

2
0

2
0

2
2   (32) 

 
In principle, one could use this exact form for the likelihood ratio; the presence of the modified 
Bessel function makes this computationally inconvenient in practice. The modified Bessel function 
can be approximated in the limits where the signal is very large and very small compared with 
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I ; our labours in the previous sessions tell us how to do this. Thus in the large signal limit we 

have 
 

   logΛ ≈ − +
A

I

A I

I

2 2
      (33) 

 

so that thresholding on the received voltage (i.e. I ) approximates to the optimum procedure;  

such an instrument would be referred to as a linear detector. In the small signal limit  
 

   ( )Λ ≈ + −1
2

2
I I

A

I
       (34) 

 
and thresholding on the intensity I (or the square of the received voltage) is the thing to do. In the 
early days of radar much was made of this distinction though the performance of the two 
detectors over the whole range of signal to noise ratios does not differ at all appreciably. 
 
 
Generalised likelihood ratios 

 
So far we have been able to deduce useful detection procedures from model clutter and target 

plus clutter pdfs that contain parameters (e.g. A, I ), without specifying what these are. In more 

complicated cases we have to be more careful. Thus we might write our likelihood ratio as 
 

    Λ =
P x b

P x b

t

a

( |{ })

( |{ })

1

0

.      (35)  

Here P Pt a and are the pdfs of the ‘target and clutter’ and ‘clutter’  signals respectively; 

{ } { }b b1 0 and are sets of parameters that characterise P Pt a and . If we have full prior knowledge 

of { } { }b b1 0 and we can make our decision on the basis of a single measurement of the signal by 

forming the likelihood ratio Λ and comparing it with a threshold T. If Λ exceeds this threshold we 
ascribe the signal to ‘target and clutter’, otherwise it is ascribed to ‘clutter’ alone; the size of T 
chosen for the test determines the probability of false alarm for the decision process. If, however, 

we do not know { } { }b b1 0 and a priori we must first estimate these parameters from the received 

signals and then, using these estimates, form the appropriate likelihood ratio. We can now base 
our detection decision on this quantity. These estimates can be derived from a set of signals 

{ }xi on the basis of the likelihood maximisation criterion, which is in turn made credible by Bayes 

theorem. Thus, for that given set of signals, we find the values of the parameters 

{ } { }b b1 0 and that maximise the values of the ‘target and clutter’ and ‘clutter’ multivariate pdfs 

respectively. From Bayes theorem these correspond the most likely model parameters, given the 

set of signals { }xi . If we have N independent signals { }xi , i = 1, ...., N, the appropriate 

multivariate pdfs are 
 

   

{ } { }( ) { }( )

{ } { }( ) { }( )

P x b P x b

P x b P x b

t
N

i t i

i

N

a
N

i a i

i

N
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( )

| |

| |

1 1

1

0 0

1

=

=

=

=

∏

∏
    (36)  
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We now estimate the parameters { } { }b b1 0 and , of which there are M M1 0 and respectively, from 

the equations 

 

 

   

{ } { }( )( )

{ } { }( )( )

∂

∂

∂

∂

log |
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;
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,
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N

i

k

a
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i

k

1

1
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0
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0 1

0 1

= =

= =

L

L

    (37) 

 

These estimates, which we denote by { } { }$ $b b1 0 and , are employed to construct the N 

independent signal likelihood ratio 
 

    

{ }( )

{ }( )
$

| $

| $

L

P x b

P x b

t i

i

N

a i

i

N
= =

=

∏

∏

1

1

0

1

.     (38) 

 
We can then use this quantity, or a suitable approximation to it, as the basis of a detection 
procedure. This approach has proved to be very effective; most of its current applications are 
classified.  
 
 
A simple example  

 
To illustrate these principles we will consider a very simple detection problem, essentially that of 
distinguishing between independent Gaussian random variables drawn from a distribution with a 
zero mean and given variance, and from a distribution with the same variance, but having a non-
zero mean. This elementary problem nonetheless highlights many of the principles exploited in 
currently used small maritime target detection algorithms. 
 
The joint pdf of N independent samples drawn form the zero mean Gaussian distribution is 
 

{ }( )
( ) 






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1
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1
exp
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σ
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the corresponding pdf for samples drawn from the non-zero mean distribution is 
 

{ }( )
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


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 (40) 

 
If we know values of the parameters defining these distributions we can form the likelihood ratio  
 

{ }( )
{ }( )k

k

xP

xP

2

1                                                                     (41) 
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and identify  the sufficient statistic  
 

∑
=

=
N

k

kx

1

λ  (42) 

 
as the optimum discriminant in this case. This is a sum of Gaussian random variables and so is 
itself a Gaussian random variable. Its pdfs, when constructed from zero mean and non-zero 
mean Gaussians, are 
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 (43) 

 
Thus, for a given threshold Λ we have the probabilities of detection and false alarm (correct 
assignment to the non-zero mean class, incorrect assignment to the zero mean class) given by 
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
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 (44) 

 
Using these results it is possible to trace out the ROC curves (probability of detection vs. 
probability of false alarm) characterisng the performance of this simple ‘detector’. 
 
So far we have assumed that we know the parameters m,σ . If however we assume that one set 

of samples is drawn from a zero mean distribution and the other from a non-zero mean 
distribution, neither of whose variances we know, we cannot carry through the foregoing analysis. 
Instead we have to adopt the so-called generalised likelihood ratio approach, in which the data 
provide us with estimates to be incorporated into the discriminant.  In the zero mean case we 
have a likelihood of the form 
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


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 (45) 

 

Given the data { }kx we can we estimate 2
1
σ as that value which maximises this likelihood; thus 

we find that 
 

2

1

22
1

1
ˆ xx

N
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If we assume that the data are drawn from the non-zero mean distribution with the pdf 
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The mean and variance parameters can then be estimated by likelihood maximisation as 
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If these parameters are now introduced into the likelihood ratio (41) we find that the quantity  
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emerges as a discriminant with which we can distinguish between the zero and non-zero mean 
distributions (speaking loosely, χ  will tend to take larger values in the latter case, especially 

when the mean is significantly bigger than the variance). To investigate the behaviour of χ  more 

fully we first note that 
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where 2, sx provide estimators of the mean and variance of the distribution form which the 

{ }kx are drawn. These estimators are themselves random variables; it can be shown that their 

joint pdf takes the form 
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Here m,σ are the root variance and mean of the underlying Gaussian distribution; ( )zΓ  is the 

gamma function. We now consider the random variable 
 

s

x
t = , (52) 

in terms of which our discriminant takes the form 
 

21 t+=χ  (53) 

 
A simple change in variables yields the joint pdf of s and t: 
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from which the marginal pdf and cumulative distribution of t  can be obtained by integration. Thus 
we can write the probability that the discriminant exceeds a threshold  
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 (55) 
 

This then allows us to plot out the ROC curves for detections based on the likelihood and 
generalised likelihood ratios; the former is seen to work rather better than the latter, as we might 
expect. In fact we need to process 10 or 15 samples in the latter to get performance comparable 
with that obtained from 3 or 4 samples in the former. 
 
 

 

ROC curves for likelihood ratio detection, based on 2,3 and 4 samples. 0.2,0,0.1 == mσ  

 

ROC curves for generalised likelihood ratio detection, based on 5,10 and 15 samples. 

0.2,0,0.1 == mσ  
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Principles of Kalman filtering 

 
In many situations we are presented with an incoming stream of measurements, from which we 
wish to discern some underlying process. As our knowledge of this process is at best likely to be 
statistical we are faced with the problem of estimating values of a random process from a series 
of measurements. Detailed knowledge of the measured process is required if an optimum 
solution to the problem is to be achieved; standard methods are predicated on a knowledge of the 
modeled system’s correlation function or power spectrum. Furthermore it is frequently assumed 
that the process is stationary and that an arbitrarily long record is available; the standard Weiner 
filter is derived on the basis of these assumptions. In many circumstances these conditions are 
not satisfied; we must undertake the sequential analysis of a stream of data whose correlation 
properties are not known and need not be stationary. Fortunately it is possible to undertake such 
an analysis, using the so-called Kalman filter. This assumes a Langevin type model for the 
underlying process similar to those discussed in the previous section, and takes explicit account 
of the changes in our prior knowledge that occur as we process a sequence of data. If the 
underlying process is stationary and Gaussian, simple likelihood maximization estimation leads 
us to a recursive filtering algorithm; this can be extended to non-Gaussian and non-stationary 
processes for which it satisfies a minimum variance criterion, if not that of absolute optimality.  
We will now develop the principles of Kalman filtering, first from the standpoint of a stationary 
Gaussian model, then from that of least squares fitting and the associated innovations sequence. 
Details of some potentially unfamiliar algebraic manipulations are included; it is hoped that these 
will render the matrix inversion lemma and its use in the generation of formal identities involving 
various covariance matrices less mysterious than might otherwise be the case. (We have already 
looked at these manipulations briefly in the session on vectors and matrices.) While the density of 
equations does increase rather alarmingly from now on, the basic ideas are relatively simple. 
 
 
In the previous session we saw how a statistically varying quantity can be modeled by a 
differential equation, driven by a white Gaussian noise process; when cast in the form of a set of 
coupled first order differential equations this can be solved, formally and numerically, to generate 
a sequence of values taken by the process at discrete time intervals. Measurements of the 

statistical process can be represented in much the same way; values of the process ( )tx  yielding 

measurements ( )ty through 

       
 
 
 
 

 
The vectors x,y need not be of the same dimension (and the matrix C need not be square) while 
the noise values n are assumed to be uncorrelated. Taken in conjunction with a statistical model 

of the underlying physical process, (56) provides us with a model of the measured output of the 
system that is suitable for use in the construction of a Kalman filter. 
 
Before we consider Kalman filtering in any detail we look at a simpler problem that shares many 
of its salient features. This is the problem of the sequential estimation of a quantity a from a 
sequence of measurements r. We know that a is a random variable with a known Gaussian 
distribution; beyond that we have no prior knowledge of its value. A sequence of values of r is 
available, which we use to successively refine out estimate of a (which remains constant 

throughout the whole process) producing an ever-narrower Gaussian distribution that captures 
our current state of knowledge of a. Thus we have our prior knowledge expressed through 
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Our estimate of a based on this would be 0m and maximizes the likelihood (57); aΛ  would give 

us an indication of the accuracy of this estimate. We are now provided with a measurement  
 

11 waCr +⋅=  (58) 

 

The noise process w is a zero mean Gaussian vector process with a covariance matrix wΛ . 

Thus we can identify the conditional probability  
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Bayes’ theorem now allows us to express the likelihood of the value taken by a, conditioned on 

this first observation 
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If we substitute (57) and (59) into this we can determine our improved estimate of a as that which 

maximizes the likelihood ( )1| raP . This calculation is easy to carry through in this case, as all the 

likelihoods involved are Gaussian; the estimate and its associated variance follow from a simple 
completion of the square in the exponent. Thus the width of the Gaussian distribution of the 

values of a, taking account of the single measurement 1r , is given by 
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and can be seen to decrease, while its mean, which corresponds to our improved estimate of a, is 
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If we now receive another measurement 2r this can be used to refine the estimate further, ( )aP  in 

the forgoing analysis now being replaced by ( )1| raP . This process can be repeated, using each 

successive measurement, resulting in an updated estimate of a and the variance characterising 

the quality of that estimate. In an obvious notation we have 
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We see the error in the estimate becoming progressively smaller and the estimate being modified 
with each successive piece of data as it is made available. Should there be a large measurement 

noise, described by wΛ , then relatively little ‘attention’ is paid to the incoming data; furthermore 

later arrivals have less effect on the estimate as 
nεΛ gets progressively smaller with increasing n. 

Both these observations are quite sensible, and in accord with our intuition. The quantity 

( )1ˆ −⋅− nn aCr  is an innovation, i.e. the difference between the current measurement and that 

based on the current estimate, and isolates the ‘new’ information in the current measurement. 
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This is multiplied by a ‘gain’ that embodies our confidence in the veracity of this innovation, and 
added to the fruits of our previous labours.  The whole thing displays a characteristic ‘predictor-
corrector’ form. 
 

Thus far we have used a sequence of measurements to improve our estimate of a single, 
constant quantity. To make further progress we now let the measured quantity evolve in time, in 
parallel with the measurement process. Initially we assume that this time evolution is 

characterized by a matrix Φ  that is constant. The measurement matrix is also taken to be 

unvarying. (We will see how to relax these constraints when we come to formulate the filtering 
process in terms of least squares fitting and innovations sequences.  For the present we assume 
that all the processes involved are Gaussian so that the estimation equations can be sorted out 
almost by inspection.) 
 
 

( ) ( ) ( )
( ) ( ) 1','

1

Qvv

vxΦx

nn
T

nn

nnn

δ=

+⋅=+
 (65) 

 

( ) ( ) ( )
( ) ( ) 2',' Qww

wxCy

nn
T

nn

nnn

δ=

+⋅=
 (66) 

 
Our assumed prior knowledge is that quantity x has a normal distribution, characterized by a 

mean ( )0x  and a variance ( )0K . We now receive our first measurement ( )1y , from which we 

estimate the corresponding ( )1x . Arguing just as for the first step of the sequential estimation 

procedure we form the estimator ( )1x̂ , which is the mean of a normal conditional distribution 

( ) ( )( )1|1 yxP  whose covariance is ( )1K  
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This familiar procedure must be modified when we receive the next measurement ( )2y . We wish 

to use this to estimate the corresponding value of the underlying process ( )2x , recognizing that 

this is different from ( )1x .  In the sequential estimation problem we used Bayes’ theorem to 

combine our prior knowledge of the measurement process and the previous estimate to obtain a 
new estimate. Here we have to accommodate our understanding of the measurement process 
and the evolution of the underlying x process. To this end we write 
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and 
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If we equate these two expressions we find that the required conditional probability density of the 

values ( )2x , given the values of ( )1y  and ( )2y , is given by 
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The model of the measurement process tells us that 
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which shows no explicit dependence on ( )1y and can be written as ( ) ( )( )2|2 xyP . Finally we need 

to construct ( ) ( )( )1|2 yxP ; it is at this point that we introduce our model (65) for the underlying 

process x . We see from the linearity of the model that ( )2x  is a normal process, whose 

distribution is determined solely by its mean and variance. Of these the former is given by 

( )1x̂Φ ⋅ ; the latter is a sum of two terms, one derived from the measurement noise and the other 

from ( )1K , the variance of our estimate of ( )1x . This can be written as 
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so that 
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These results can be combined to give 
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Using this result we can now identify the optimum estimate of ( )2x  and the variance ( )2K  of the 

associated distribution; completing the square is sufficient in this Gaussian case. Thus we find 
that 
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Once again we see that the optimum estimate takes the ‘predictor-corrector’ form. The Kalman 
gain takes the form of the ‘quotient’ of the variances of the current estimate and the measurement 
noise and weights the innovation formed from the incoming measurement, the previous estimate 
and our knowledge of the underlying process x. 

 
The expressions we have just derived can be transformed using the so-called matrix inversion 
lemma, which crops up in many situations where we might wish to manipulate covariance 
matrices and their inverses. Thus we note that, for two co-dimensional square matrices A and B,  

 

( ) BBAA −+= ; 

pre and post multiplication by ( ) 11 and 
−− +BAA (or vice versa) then gives us 
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The first of these identities can be iterated to yield 
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frequently this expansion can be re-arranged and then re-summed to yield useful matrix 
identities. To illustrate this procedure we ‘invert’ the relationship (c.f. (75)) 
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 (78) 
 
If this expression for the Kalman gain is now substituted into the predictor corrector equation (75) 
we obtain an alternative expression for the optimum estimate. To this end we write 
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so that 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )1ˆ21|21|21ˆ2ˆ
1

2 xCyCKCQCKxΦx ⋅Φ⋅−⋅⋅+⋅⋅+⋅=
−TT  (80) 

 

While this expression is formally slightly more complicated than that in (75), it requires less work 
to be done inverting matrices in its evaluation. 
 
Much the same analysis then applies to the processing of the third and subsequent 
measurements: the optimum running estimate of the process x is generated recursively as 

follows 
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 (81) 
 

It is reassuring to note that, when we set 0Q1Φ == 1, , these equations reduce to those of 

sequential estimation (63), (64). This approach, based on a Gaussian model, was developed by 
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Swerling (who perhaps felt a little aggrieved that Kalman got all the credit); Gauss himself also 
discussed the basic ideas, back in the early years of the nineteenth century. 
 

So far we have taken stationary Gaussian models for both the underlying process x and the 
measurements y; this has allowed us to calculate estimates, derived by likelihood maximization, 

in a straightforward fashion. The resulting scheme has a simple predictor-corrector form, which 
highlights the role of the innovations process.  However the Kalman filtering technique is of much 
greater generality than this simple presentation might suggest. In particular it can be applied 

directly to non-stationary, non-Gaussian processes, for which the ΦΦΦΦ, C, Q matrices vary with time. 

It is also possible to modify the filtering technique, which estimates ( )nx  from the series of 

measurements ( ) ( )nyy L,1 , to estimate ( )sn +x . When s is greater than zero we have a 

prediction process; negative s likewise gives us a smoothing process. The algorithms appropriate 
to these more general cases are derived in a rather different manner, based on a least squares 
criterion and focusing attention even more closely on the innovations sequence. Without the 
motivation provided by the foregoing likelihood maximization analysis, this approach might 
appear a little contrived; now we are in a position to better appreciate what it achieves. Bearing 
this in mind we will review the innovations based derivation, which was first presented in the 
seminal work of Kalman, ‘A new approach to linear filtering and prediction problems’, J. Basic 
Engineering, 82,35-45, 1960 

 
 
Central to Kalman’s development is the concept of a least squares estimate, expanded in an 
incomplete orthogonal set of basis functions. Thus we might write 
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We now wish to minimize the mean square error in this representation: thus we have 
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The least square error condition identifies the coefficients in the expansion as the projections of 
the function f onto the basis functions; these coefficients do not depend on n. (You may 
remember seeing things like this before, in session 4.) We now note that the minimization 
condition can also be written as 
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This in turn shows that the error in the incomplete expansion, chosen to minimize this error, is 
itself orthogonal to the basis functions used in the expansion 
 

( ) ( )( ) ( ) nmxxfxf mn L,1;0 ==− φ . (85) 

 
This argument can be generalized to vector processes and be stated formally as 
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 (86) 

 
We see from (81) that the Kalman filtering process represents the current estimate of x as a 

predicted contribution, formed from the previous estimate, and a correction term incorporating the 
difference between the current measurement and the value predicted from the previous estimate 
of x. This latter quantity has been termed the innovation, as it incorporates the ‘new’ information 

in the current measurement, beyond that which might be deduced prior to the receipt of the 
current measurement. Furthermore, if we were to construct our least squares estimate in terms of 
some orthogonal basis, the innovation derived from that estimate would be orthogonal to the 
basis functions used in its construction. This implies that a suitable basis set might be constructed 
from the successive innovations. These two observations focus our attention on the innovations 
sequence; to exploit this most effectively we now consider one-step prediction processing, rather 
than filtering. The innovations sequence arises most naturally in this context; the one-step 
prediction algorithm can then be modified quite straightforwardly to yield a Kalman filtering 
process. 
 
We now consider a non-stationary process, characterized by a state vector x, which evolves over 

discrete time intervals as 
 

( ) ( ) ( ) ( )nnnnn 1,11 vxΦx ++=+  (87) 

 
Measurements are derived from the process x through 

 

( ) ( ) ( ) ( )nnnn 2vxCy += , (88) 

 
C need not be a square matrix: the number of components in the state vector need not be equal 

to the number of components of the measurement vector. The evolution matrix ΦΦΦΦ has some 
simple properties that will be exploited shortly; we note that  
 

( )
( ) ( )mnnm

nn

,,

,

1
ΦΦ

1Φ

=

=
−

 (89) 

 

We assume that we know ΦΦΦΦ, C and the correlation properties of the process and measurement 

noises. Thus we have 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0vv

Qvv

Qvv

=

=

=

H

nm
H

nm
H

mn

nmn

nmn

21

222

111

δ

δ

 (90) 

 
Now let us make a least squares estimate of the nth measurement, on the basis of the previous 

n-1 measurements ( )1−nY . This estimate is denoted by ( )( )1|ˆ −nn Yy . The difference between 

this estimate and the actual value is referred to as the innovation, i.e. it gives us a measure of the 
new information in this measurement, beyond that provided by the previous measurements. 
 

( ) ( ) ( )( )1|ˆ −−= nnnn Yyya  (91) 

 
This innovation is orthogonal to the previous measurements, and to the previous innovations 
 

( ) ( )

( ) ( ) 11,

11,

−==

−==

nmmn

nmmn

T

T

L

L

0aa

0ya

 (92) 

There is also a one to one invertible correspondence between the measurements and the 
innovations; the orthogonal innovations sequence can be constructed from the measurement 
sequence by a Gram-Schmidt procedure.  
 
We now wish to construct the covariance or the correlation matrix of the innovations process. If 

we have an estimate  ( )( )1| −nn Yx
s

 of the current state vector based on the previous 

measurements then we can construct the innovation and evaluate its correlation matrix 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )T

TT

nnnnnn

nnnnnnnn

nnnnn

nnnnnnnnn

1,1,1|

1|

1|1,

1,1|

2

2

−−=−

+−==

−−=−

+−=−−=

εεK

QCKCaaΣ

Yxxε

vεCYxCya
s

s

 (93) 

 
Here we have adopted a notation that anticipates the identification of the results of the 
innovations analysis with those based on likelihood maximization. 
 
We now set about constructing an estimate of a state vector, based on the set of n innovations; 
this is equivalent, through the invertibility of the Gram-Schmidt process, of making an estimate in 
terms of the n measurements that we have. Thus we write 
 

( )( ) ( ) ( )kkni

n

k

i aBYx ∑
=

=

1

|ˆ  (94) 

 
The orthogonality principle tells us that 
 

( ) ( )( )( ) ( ) nmmnii L1,|ˆ ==− 0aYxx  (95) 

 
so that, on substituting our expansion of the estimate in terms of the innovation sequence, we find 
that 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1−=

==

mmim

mmmmmmi

T
i

i
T

i
T

ΣaxB

ΣBaaBax

 (96) 

 

( )mΣ  is the covariance matrix of the mth innovation. Thus we can write our estimate as 

 

( )( ) ( ) ( ) ( ) ( )mmmini

n

m

T
aΣaxYx

1

1

|ˆ −

=
∑=  (97) 

In particular we have 
 

( )( ) ( ) ( ) ( ) ( )mmmnnn

n

m

T
aΣaxYx

1

1

1|1ˆ −

=
∑ +=+  (98) 

Now we can express this estimate recursively in terms of its predecessor, and a correction: 
 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (99) 
This is the fundamental Kalman recursion relation, where we predict the next estimate in terms of 
the previous one, then correct it in terms of the innovation in the new measurement.  
 
To make further progress we now evaluate the Kalman gain matrix G. To this end we note that 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (100) 
Now we make the identification 
 

( ) ( ) ( ) ( ) ( ) 1
1|,1

−−+= nnnnnnn T ΣCKΦG  (101) 

 
recalling that this is the gain for the one-step prediction process.  
 

Now we wish to establish a recurrence relation satisfied by the ( )1| −nnK ; the earlier analysis of 

the stationary Gaussian model provides us with a few clues to what we should do. Thus we form 
the error in the one-step prediction and establish a recurrence relation: 
  

( ) ( ) ( )( )
( ) ( ) ( )( )[ ] ( ) ( ) ( ) ( )( )[ ] ( )
( ) ( ) ( )[ ] ( ) ( ) ( ) ( )nnnnnnnnn

nnnnnnnnnnn
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vYxCyGYxxΦ
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−+−−+=

+−−−−−+=

+−+=+

 (102) 
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Squaring and averaging we find that 
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )TT
nnnnnnnnnnnnnnnn GQGQCGΦKCGΦK 21,11|,1|1 ++−+−−+=+  

 (103) 
while expanding out and tidying things up  gives 
 

( ) ( ) ( ) ( ) ( )nnnnnnnn
T

1,1,1|1 QΦKΦK +++=+  (104) 

 
where 

 

( ) ( ) ( ) ( )( ) ( )1|1, −+−= nnnnnnn KCGΦ1K  (105) 

 
The result (104) is often referred to as the Riccatti difference equation; should everything settle 
down to an equilibrium then the predicted state error correlation matrix will tend to a constant 
value K satisfying the identity 

 

( ) 0QCKQCKCKC =−+
−

1

1

2
TT  (106) 

 
The results derived thus far allow us to set up a recursive one-step prediction algorithm. The 
output of this is readily modified to give us a filtering algorithm, which can be compared directly 

with that derived from the Gaussian likelihoods model. Given an estimate of ( ) ( )nn Yx  given  we 

form the corresponding estimate of ( )1+nx  from the evolution equation as follows 

 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )nnnnnnnnnnn YxΦvYxΦYx |ˆ,1ˆ|ˆ,1|1ˆ ⋅+=+⋅+=+  (107) 

 

as the estimate ( )nv̂ of a zero mean Gaussian process uncorrelated with the process x is zero. 

Thus we can write 
 

( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )nnnnnnnnn

nnnnnn

nnnnnn

T
aRCKYxΦ

aGΦYx

YxΦYx

⋅⋅⋅−+−−⋅−=

⋅⋅++−=

+⋅+=
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 (108) 

 

This can be seen to map directly onto the results (93) obtained earlier, and to generalise them to 
the non-stationary case.  
 
Retracing the steps that led from (75) to (79), but in the reverse order, we see that 
 

( ) ( ) ( ) ( ) ( ) ( ) 1
2

1
1|

−− ⋅⋅=⋅⋅− nnnnnnn
TT

QCKRCK  (109) 

 

Finally we note that (105) expresses ( )nK , which is necessarily positive, as the difference of two 

matrices; numerical errors can result in ( )nK  becoming negative. This instability can be avoided 

by expressing ( )nK  in the so-called Joseph stabilised form, which displays it as a sum of two 

necessarily positive forms: 
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It is hoped that this preliminary account of the Kalman filter has demonstrated how its predictor-
corrector form combines prior knowledge (from the underlying model of the process and earlier 
measurements) with the new information (derived from the most recent measurement) to give a 
constantly up-dated estimate of the state of the underlying process.  Some formal manipulations 
of covariance matrices, that are frequently omitted, albeit for rather different reasons, in both 
elementary and advanced texts, can nonetheless be rather unfamiliar and have been discussed 
here in sufficient detail to make them more readily accessible.  Even so, it should be stressed that 
this brief account has done no more than scratch the surface of the vast body of work that has 
grown over the past forty or so years. Obviously, any choice of review material is a matter of 
personal taste: van Trees, ‘Detection, Estimation and Modulation Theory, Part 1’, John Wiley, 
New York, 1968, as always, provides a thorough grounding in the relevant estimation theory and 
discusses the early work on the subject. Haykin’s book ‘Adaptive Filter Theory’, Prentice Hall, 
New Jersey, 1996, provides a great deal of useful background material on the Kalman filter and 
its generalisations, showing how the principles of its derivation and implementation underpin 
much current work on adaptive filters. Finally a closer examination of the mathematical 
foundations of the subject can be found in Kailath’s ‘Lectures on Wiener and Kalman filtering’ 
Springer, New York, 1981. It is interesting to note how like a lot of economics modeling the 
Kalman approach is; an exhaustive account is given in ‘Dynamic Econometrics’, D. F. Hendry, 
Oxford University Press, 1997 which nonetheless contrives to omit the words Kalman and filter 
from all of its 900 or so pages. 
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Exercises 
 
The material covered today makes much closer contact with ’practical’ radar problems than has 
been achieved in earlier sessions. This new realism is reflected in the exercises, which 
encourage you to fill in the details we have glossed over in the notes. If you are pressed for time 
you might identify the application closest to your own interests and concentrate on that. A more 
leisurely run through of the full set of exercises should give you a working knowledge of detection 
theory, as applied to a variety of radar systems, and put you in pretty good shape for attacking 
the research literature. 
 

1. Draw out some ROC curves based on the result (21) for a fixed value of Ia and several 

values of It . Check the derivation of (25) and use this to evaluate PD and PF , based on 

the same Ia , It  and different N. Present your results as ROC curves and comment on 

them. Fill in the details of the derivations of (26), (30) and (31). Plot out the pdfs for 

various A I2 and N. Compare the means and normalised variances of the clutter and 

target plus clutter pdfs for a fixed A I2 and varying N. Comment on your results. 

(Mathematica is very helpful when it comes to evaluating and plotting out the modified 
Bessel functions.) 

 
2. In (30) we derived the form of the Rice distribution; try out the following alternative 

derivation. If E n A= + and n has the pdf 

 

    ( ) ( )( )P n n
I

n n II Q Q I, exp= − +
1 2 2

π
 

 

 what is the pdf ( )P E EI Q, ? Express this in terms of the amplitude and phase of E  to give 

 

   ( ) ( )( ) ( )P E
E

I
E A I EA I, exp exp cosθ

π
θ= − +2 2 2   

 the phase θ being measured relative to that of A. Evaluate the marginal distributions of E 

and θ . Relate the former to (30) through I E= 2 . Here we have regarded E EI Q, as 

components of a vector in a two dimensional space. By considering a vector in a 2N 
dimensional space extend the above argument to derive (31). Spherical polar co-
ordinates in an arbitrary number of dimensions are required for this; one possible 
reference is Sommerfeld: Partial differential equations in physics, Academic Press, 1949 
Chapter 5, Appendix 4 (p227).  

 

3 Starting with the joint distributions (54) of t and s, evaluate the marginal distribution of t  
when m, the mean of the underlying Gaussian distribution, is zero. You should get 

 

( )
( )( )( ) 22121,21B

1
n

tn

tP

+−
=   

 
Here we have introduced the beta function 

 

( ) ( ) ( )
( )βα

βα
βα

+Γ

ΓΓ
=,B   
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which lends its name to this distribution. You might recognise this as the Student t 
distribution. What form does the pdf of t take when m is not zero? You might like to avail 
yourself of Mathematica as a short-cut through the fancy sums. Derive the following 

approximation, valid when 22 σm is large 
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 (45) 
 

([z] represents the integer part of z).. Check the derivation of (55) and bash out a few 
ROC curves of your own. 

 
4 Working your way through the details of the Kalman filter derivations is a worthwhile 

exercise in itself. To provide some motivation, check that, if the predicted state error 
correlation matrix ‘settles down’, it satisfies the equilibrium Ricatti difference equation 
(106). In addition, show that (105) is equivalent to the Joseph stabilised form (110). 

 
5 The following has nothing to do with the material in the session, but is quite neat. 

Consider the mean absolute difference between two identical, independent random 
variables, which can be written as 

 

( ) ( )ypxpyxdydx −=∆ ∫∫
∞

∞−

∞

∞−

1 . 

 
where p  is the pdf of an individual random variable. Show that  
 

( ) ( )( )∫
∞

∞−

−=∆ dyyFyF 121  

where F is the cumulative probability 
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